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The two-dimensional wave pattern produced by 
a disturbance moving in an arbitrary direction in a 

density stratified liquid 

By B. S .  H. RARITY? 
California Institute of Technology 

(Received 9 June 1967) 

The two-dimensional internal wave pattern produced by a small disturbance 
moving with constant velocity along a line of arbitrary inclination in an inviscid, 
density stratified liquid is studied. It is shown how the far field wave pattern 
evolves as the inclination changes from the extreme of horizontal motion to that 
of vertical motion. It is found that, in general, waves propagate ahead of the 
disturbance. 

1. Introduction 
It is known that if a cylinder with horizontal axis is moved horizontally in a 

direction perpendicular to its generators with a velocity which is sufficiently small 
in a fluid of non-uniform density then a slab of fluid is pushed ahead of and 
dragged behind the cylinder. A schlieren photograph of this phenomenon was 
published by Mowbray & Rarity ( 1 9 6 7 ~ ~ ~  plate 1, figure 1). It may be considered 
to be the internal wave pattern produced by the horizontal motion of the cylinder. 
If the cylinder moves in a vertical direction, there is a ' flared-skirt ' wave pattern 
trailing behind the body; the analogous situation with axial symmetry about a 
vertical line, that is the wave pattern produced by a sphere moving vertically in 
a density stratified fluid, was investigated by Mowbray & Rarity (1967b), in 
which there appears several schlieren photographs of the wave pattern; one of 
these photographs appears also in Lighthill (1967). Where the direction of motion 
is vertical, there is no essential difference between the wave patterns produced by 
a sphere and a horizontal cylinder; this is not so for any other direction of motion. 

The present paper analyses the two-dimensional wave pattern produced by a 
disturbance which moves with a constant velocity V at an angle a to the hori- 
zontal in a stably stratified fluid. It is shown how the pattern changes from the 
' flared skirt ' to the ' upstream wake ' as a changes from 4;. to zero. It is found that 
the far field upstream wave pattern disappears if the parameter Vw, /g exceeds 
the value 2 cos a; w,, is the Vaisalii-Brunt frequency ( - gp-1dp/dy)4. The effect of 
the finite extent of the disturbance is also investigated. The density of the fluid 
is assumed to decrease exponentially with height so that the medium is homo- 
geneous with respect to internal waves; if the medium is slightly inhomogeneous, 
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the resulting wave pattern may be obtained as a deviation from the pattern in a 
homogeneous medium by allowing this pattern to adjust to local conditions, 
keeping the frequency constant. 

2. Wave patterns from a moving body 
If p is the density, p the pressure, g the acceleration due to gravity and q the 

velocity vector, then, in a co-ordinate system with x horizontal, y vertical and 
increasing upwards, fixed with respect to the body which moves with a velocity 
V at an angle a to the horizontal, the equations of motion are 

where DIDt denotes 
a a a -+ (u - V cos a) - + (v - Vsin a) - , 
at ax aY 

where we have used the condition that the density is constant along a particle 
path. I f  we introduce a stream-function $ such that if u and v are the perturbation 
velocities conjugate to x and y respectively then u = a$/ay, v = - h,b/ax and 
if we linearize about a state of rest in this co-ordinate system, then the equation 
for $ has solutions proportional to exp (WE y/Zg) exp { i (k ,x  + k, y - wt)] provided 

(w+k,Vc~sa+k,Vsina)~ = w~k2 , {k~+k2 ,+  (~@g)~}- l ,  

where w; denotes the square of the Vaisalii-Brunt frequency -gp-ldp/dy. The 
Boussinesq approximation has not been made; the approximation would set 
wij2g identically zero in the dispersion relation above. The disturbance stream- 
function $ may be represented as a double Fourier integral 

+ = exp ( W g ) S S f ( k 1 .  k,) exp { i (k ,x+  k,Y))dk,dk,> 

wherefis related to the precise nature of the disturbance. The condition that the 
pattern be steady with respect to the body, that is w = 0, yields the condition 

where 

woK,  = k,Vsina-k,Vcosa, w,K,=k,Vco~a+k~Vsina and /3, = $V2ui/g2. 

The new wave-number component K ,  is a scaled wave-number component con- 
jugate to the direction of motion of the body; K l  is the wave-number Component 
in a perpendicular direction SO that (K,,K,) form a right-handed set. When 
a = go", so that the body is moving vertically upwards, K2 is conjugate to the 
positive y direction and K ,  to the positive x direction. We may define new co- 
ordinates x, Y by the relations 

V X  = w,(zsina-ycosa), 

T'Y = o,(scosa+ysina), 

K ,  = ( K ,  cos a + K ,  sin a)  (K2, + K; +/32)-$, 
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so that the Fourier transform representation of @ may be written in the form 

II. = j/F(K,, K,) exp{i(K,X+K,Y)} dK1dK2, (1) 

where K ,  = (K,cosa+K,sina) (K2,+Ki+P2)A and P is related to f in an 
obvious way. 

The implications of the radiation condition are most readily seen by following 
Lighthill's (1967) rule, which states that the condition is satisfied by only those 
waves which lie in those parts of the plane which are covered by the normals to 

t" 

FIGURE 1. The curve o = 0 for a = go", p = 0. 

the curve w = 0, drawn in the direction of increasing w. The curves w = 0 how- 
ever are a two-parameter set. We shall find that the main features of the wave 
patterns for arbitrary ,8 can be deduced from the curves w = 0 with P = 0. The 
equation for the curve w = 0 can be written in the form 

(K2+P2)4 = ]sin(O+a)/sinBI 

where we put K ,  = K cos 8 and K, = K sin 8. Curves w = 0, ,8 = 0 for a = go", 
30' and 1" are shown in figures 1-3; the direction of the arrows indicates the direc- 
tion of normals pointing towards increasing w.  When a = go", figure 1, so that the 
body is moving vertically upwards, no arrows point into the fist or second 
quadrants, so that no waves are propagated ahead of the body. When a = 30", 
figure 2, both branches of the curve have a point of inflexion at  the origin and a 
common tangent at  an angle - a to the K, direction. Since K ,  is conjugate to the 
direction of motion of the body which is inclined at the angle a to the horizontal, 
no arrows lie in the wedge between the line of motion of the body and the positive 
x-axis; therefore no waves will be found in this wedge. There are, however, waves 
ahead of the body in the fourth quadrant of the (x, y)-plane. In figure 3, a = lo, 
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there are no waves in the wedge of 1" to the right of the positive K,-axis. In  
figures 1-3 it will be noted that arrows never point into the second quadrant so 
that waves will not be found in the conjugate directions in the (5, y)-plane. If 

t t 

FIGURE 2.  The curve w = 0 for a = 30", p = 0. 

t Kz 

FIGURE 3. The curve w = 0 for a = lo, p = 0. 

a = 0, then the curve w = 0, p = 0 becomes the unit circle in the K-plane to- 
gether with the K,-axis and there are arrows in the direction of positive K ,  
corresponding to K ,  = 0, 0 < lKll < 1 ;  this is shown in figure 4. 

Let us now return to the general case ,8 + 0; we see that the curve w = 0, 
p + 0 may be derived from w = 0, ,8 = 0 by reducing the square of the radial 
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distance to any point on the curve by an amount p2. Therefore those points on the 
diagram w = 0, p = 0 which lie inside a circle centred at  the origin with radius p 
will have no corresponding points on the diagram w = 0, /.? + 0. It will have been 
noticed that in the case p = 0 the waves which propagate ahead of the disturbance 
all correspond to wave-numbers somewhat less than unity; the extreme case is 

FIGURE 4. The curve o = 0 for a = 0, /? = 0. 

that of a = 0, p = 0. Thus we can say that the effect of 1's being non-zero is to 
remove at  least a portion of the curve w = 0 along which arrows point into the 
first K quadrant and may well ensure that no arrows point into that quadrant. 
Note that this result has not appealed in any way to the finite extent of the 
disturbance. 

If we apply arguments of stationary phase to obtain an asymptotic value of the 

with (K2 +pZ)i = Isin ( I 3  + a)/sin 81 , 8 = tan-l K2/K, ,  then the points of stationary 
phase are given by 

x Y-ldK,/dK, + 1 = 0, x/ Y = O( I) ,  

which simplifies to give 

X=-Y. 

sin2 (8 + a)  
sin2 I3 - P2 

sin ( I 3  +a) cos (8 + a)  - p2sin 8 cos I3 cote - 
I I . -  - 82 

sin2 (8  + a)  

Points of constant phase are 
K[Xcose+ Y sin81 = @, say, 
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which yields 
X sin (8+ a)  cos (8+ a)  -/Psin 8 cos 8 

sin2 8 

_ -  
a -  sin 8 [sin"(e+a)-Be]t , 

- 4  - 3  - 2  -1 
I I I I 

1 sin(e+a)cos (8+a)cot8-/32co~28 - Y _ -  y(e+ar)_~,]t [sin2 (e+ a )  - p2]*- 
sin 8 sin2 8 sin2 8 

a sine 

1 2 3 4 XI@ 
I I I i 

FIUURE 5. A line of constant phase for cc = 90°, p = 0. 

which always has a solution and only one solution. The pattern of lines of con- 
stant phase for a = go", p = 0 is shown in figure 5. The corresponding axisym- 
metric problem for a = 90" is that of an ascending sphere, a situation in which the 
wave pattern differs in no essential respect from the two-dimensional case, has 
been studied and was described by Mowbray & Rarity (1967 b ) :  the agreement 
between experiment and theory was good. The pattern has a seriesof cusps on the 
line of motion behind the body, no crest passing through the disturbance. Figure 6 
shows the pattern for a = 30". We see that there are no waves in the wedge 
between the Y-axis and the x-axis; the Y-axis corresponds to the line of motion 
of the body. The crest is tangential to the positive and negative x-axis at  infinity. 
There is a caustic along the trailing portion of the line of motion of the body and a 
line of cusps on the line Y / X  = tan 79", that is the line y/x = tan 19". Successive 
crests will interfere in the wedge bounded by the line of cusps and the caustic in 
the third quadrant of the ( X ,  Y)-plane. Figure 7 shows a constant phase line for 
a = 1"; the body is moving at  1" to the horizontal, 'gravity' acts from left to 
right in the figure. As a+O, the portions AB, AC move off towards larger and 
larger negative X and Y in such a way that the point A moves towards the line 
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Y / X  = 1, leaving a single line along the whole Y-axis; the accumulation of lines 
of constant phase on the Y-axis constitutes the upstream and downstream wake, 
and is a singular case. 

We note that in all wave patterns other than a = 90' the crests and troughs 
tend asymptotically to the x-axis so that there is always an accumulation of 
waves on the x-axis, far upstream and downstream. 
If p #= 0, the form of lines of constant phase is much the same; there is still a 

- 4  - 3  - 2  -1 \ I  

FrGURE 6. A line of constant phase for a = 30°, p = 0. 
- 1  

FIGURE 7. A line of constant phase for a = lo, /3 = 0. 
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caustic corresponding to sin8 = 0, a t  X / @  = 0, Y / @  = - l/sina. There are no 
waves in the wedge of angle tan-l [sin a/(cos a - p)] in the positive x-direction 
lying below the line of motion of the disturbance. The wedge now covers a portion 
of the fourth quadrant in the (x, y)-plane. The boundary of the wedge which lies 
in the fourth quadrant is an asymptote for all lines of constant phase; in addition, 
its reflexion in the origin is an asymptote. There is still an accumulation of crests 
and troughs along the asymptotes. 

We may study the singular nature of these accumulations by considering the 
expression (1) in more detail. If in (1) the variables are changed to K and 8 
and X = R cos $, Y = R sin $, then 

2nP*(K, 8) exp{iRKcos (O-$)}K-ldKdO 
sin28(K2+P2)-sin2 (8+a) 7 

where H*(K, 8) represents the effect of the finite extent of the disturbance. To 
accomplish the integration with respect to K explicitly, take 

P*(K, 0) = K exp { - A K }  
corresponding to a disturbance proportional to d/dR(R2 + A2)-l. Then 

2n exp {iR cos (8- $) K(8))  exp { - AK(8))  
do, -- 

sin2 OK(@ 

where K(8)  = 

and we have neglected a term of order exp { - KR[ cos (8 - $) I}; K(8)  is required to 
be real. For sufficiently large R, the main contribution to the integral will arise 
from the zeros of the denominator and the points at  which cos (8- $)K(B) is 
stationary. The contribution from the zeros of sin 8 is zero by virtue of the fact 
that K(8)+m and A is non-zero. The corresponding point on the wave is the 
caustic along the trailing portion of the line of motion of the body. This singularity 
then is smoothed out by the finite extent of the disturbance. On the other hand, 
the contribution from the zeros of K(8)  is finite and independent of R for suffi- 
ciently large R. The corresponding points are those portions of the wave which are 
asymptotic to the line 

Y / X  = tan-l(sina/(cosa-p)). 
The stationary values of cos (8-  $)K(8)  establish a relation between 8 and q5 
which is precisely the relation between the direction 6 in figures 1-4 and the direc- 
tion $ of the positive normals to the curves. The contribution is O(R-8) except 
at  the double points, where it is O(B-4) and is essentially unaffected by the finite 
extent of the disturbance. 
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